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Abstract 

A fourth-order topological invariant for non-dissipative magnetic or vortex configurations with 
zero helicity is constructed. It is an integral form of the two-link Sato-Levine topological invariant. 
Geometrically, the invariant is determined by the self-linking number of the curve of intersection 
of Seifert surfaces pulled on two linked flux tubes. 
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I. Introduction 

One of the classical problems of geometry and topology: understanding the difference 
between knots and links, has found some interesting applications in the physics of 
polymers and quantum field theory. Now finding "equivalent" vortex or magnetic lines 
is a focus of interest in classical hydrodynamics and electrodynamics. The use of the 
helicity invariant, which measures the total linking of pairs of vortex or magnetic lines, 
has been very successful. For example, this invariant is an essential component of 
dynamo theories explaining the origin of the planetary, stellar and galactic magnetic 
fields [Moffatt 1978, Parker 1979, Krause and R~idler 1980, Zeldovich et al. 1983], and 
it constrains the energy of relaxing magnetized plasma configurations [Taylor 1974, 
Freedman 1988,Moffatt 1990]. 

There are however many topologically more complicated configurations, in particular 
those having zero helicity. In knot theory they are distinguished by different invari- 
ants. To formulate these invariants the power of group theory is normally used. This 

0393-0440/95/$09.50 @ 1995 Elsevier Science B.V. All rights reserved 
SSDI 0 3 9 3 - 0 4 4 0 ( 9 4 ) 0 0 0 0 8 - R  



96 P Akhmetiev, A. Ruzmaikin/Journal of Geometry and Physics 15 (1995) 95-101 

approach generates some polynomials, the coefficients of which are the invariants. The 
Alexander polynomials were known early, then the Jones polynomials, and recently 
the more general Vassiliev invariants and corresponding polynomials were discovered 
[Vassiliev 1990,Arnold 1992]. It is still not clear how those polynomials can be used 
in physics, especially in hydrodynamics or magnetohydrodynamics. The problem is to 
express the topological invariants in terms of the observed parameters. At the moment 
this problem has been solved effectively only for the helicity, which can be represented 
as an integral with an integrand that is of second-order in the field amplitude. An in- 
tegral form for a third-order invariant (the Borromean rings) has been suggested by 
Berger [Berger 1990] and extended to higher-order odd invariants by Evans and Berger 
[Evans and Berger 1992]. 

In this paper an attempt is made to construct "a physical form" for a topological 
invariant for a two flux tube configuration with zero helicity. A well-known example 
of such a configuration is the Whitehead link. The corresponding topological invariant 
in knot theory was found by Levine and Sato [Sato 1984]. The main result of this 
paper is the presentation of the Sato-Levine invariant in integral form with the integrand 
expressed through vector-potentials of the magnetic field in flux tubes. The integrand is 
of fourth order in the field amplitude so one can refer to the integral as "fourth-order 
topological invariant". 

2. Framing and Seifert's surfaces 

Consider closed field lines concentrated into thin flux tubes. The flux tube is assumed 
oriented, i.e. a direction of the vorticity or magnetic field along the tube is specified. 
More complicated morphologies of the magnetic fields can be studied by separating the 
space into regions bounded by magnetic surfaces, B .  nls = 0 [Berger and Field 1984]. 
The analysis of ergodic lines can be reduced to the case of closed tubes [Arnold 1974, 
Arnold and Khesin 1992]. 

It is natural to use a framing, i.e. a set of normals to the axis of the flux tube, and 
natural coordinate lines on the flux tube, i.e. meridians and longitudes. A meridian is 
a closed curve which bounds a cross-sectional disk of the flux tube. The meridian is 
a uniquely defined coordinate line because any two meridians are isotopically equiva- 
lent, i.e. can be made to coincide by deformation (see, for example, [Rolfson 1976] ). 
However the definition of longitude involves a choice. There are an infinite number 
of isotopically different longitudes, depending on how many times a longitude curve 
twists around the flux tube before it returns to the starting point. It is always possible to 
choose the longitude in such a way that its twisting will compensate the writhe (kinks) 
of the flux tube. In other words, among all framings there is a preferred one which has 
self-linking number of zero (see, for example, [Sato 1984] ). 

Consider now the preferred longitude on the flux tube and join to it, along the 
normals, a surface having the flux tube as its boundary. This surface, called in topology 
the Seifert surface (see, for example, [Milnor 1966] and [Rolfson 1976] ), is compact, 
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connected and orientable (has two sides). In contrast to any other surfaces, the Seifert 

surface has a remarkable property: the self-linking number (helicity) of its boundary is 

zero. In spite of this constraint there still are, evidently, an infinite number of Seifert 
surfaces. In physical terms, the Seifert surface for a flux tube or a set of flux tubes 

can be constructed with the help of level-surfaces of the vector-potential created outside 
the flux tubes [Akhmetiev and Ruzmaikin 1992]. The vector-potential in general is 
multivalued; however, there are some regions in which the surfaces are defined by 

single-valued functions. This fact will be used in our construction below. 

3. A topological invariant of two-component links 

With the help of Seifert surfaces it is possible to construct a topological invariant for 

configurations consisting of two flux tubes linked in such a way that the helicity of the 

configuration is zero [Sato 1984]. An example of such a link is the Whitehead link 

[Crowell and Fox 1963], see Fig. 1. 

Consider a link consisting of a pair, say Ui and Uj, of mutually disjoint, closed 
magnetic or vortex flux tubes. Each flux tube bounds a Seifert surface. Links for which 

this pair of surfaces do not intersect are trivial (equivalent to two separated flux tubes). 
In the general case, each Seifert surface bounding a flux tube intersects the other flux 
tube. However when the linking number Lij of these two flux tubes is zero, one can 
find Seifert surfaces which do not intersect flux tubes. The intersection of these two 

Seifert surfaces has the form of a closed framed curve. The self-linking number of this 
framed curve is a topological invariant [Milnor 1966]. The invariant is independent 

of the particular pair of the Seifert surfaces, as was pointed out by Levine and Sato 

]Sato 1984]. 
To demonstrate this construction consider two flux tubes linked as in the Whitehead 

link. Pull a Seifert surface in the form of a disk on the "large" flux tube with "twist 

over-pass" near the clasp (see [Cochran 1990], and Fig. 2a). The Seifert surface pulled 

Fig. 1. The Whitehead l ink as an example  of  a non-trivial l ink with zero helicity. 



98 P Akhmetiev, A. Ruzmaikin/Journal of Geometry and Physics 15 (1995) 95-101 

(a) (b) 

Fig. 2. The Seifert surfaces of the two flux tubes in the Whitehead link (presented separately in (a) and 
(b)) intersect along the self-linked curve shown on the right side of the picture. Near the clasp the "twist 
over-pass" surface is used [Cochran 1990] 

on the other flux tube has the form of  a handle to avoid intersecting or touching the 

other flux tube (Fig. 2b). 

It is easy to see that this surface will intersect the first Seifert surface along a closed 

twisted curve having non-zero self-linking number. This number is identified with the 

invariant under consideration, which will be denoted as W. 

Thus, in the construction of  this high-order topological invariant, the concept of  the 

linking number is used again. In this case, however, it is applied not directly to the 

flux tubes, but to a closed line of  intersection of  two Seifert surfaces pulled on the flux 

tubes. 

4. Integral form of the two-link invariant 

Let us construct this invariant through vector-potentials created by the field concen- 

trated in two unlinked flux tubes. Let Ai = XTgbi and A j  = •(bj be the vector potentials 

outside the flux tubes. In so far as the flux tubes Ui and Uj are unlinked, the functions 

~b i and @j are single-valued inside Uj and Ui, respectively. We will assume that all 
functions under consideration are smooth. The Seifert surface over the first flux tube 

is ~bi=const., and it is ~bj=const. lbr the second flux tube. The vector-potentials A i and 

A j  are normal to the corresponding Seifert surfaces. The vector-potential created by the 

flux tube Ui inside the flux tube Uj is a gradient of  some scalar function, Ai = Vfbi .  

And the vector-potential created by the flux tube Uj inside the flux tube Ui is Aj = XT~bj. 

Consider the vector 

G = Ai × A j  - dpjBi + fbiBj. 

The vector G is divergence-free outside the flux tubes since 

(2) 
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V "  (Ai x Aj) = V "  (Vfbi × V~bj) = ( V  x V i i i )  • VI~ j  - V i i i ,  ( V  X V~bj )  -- 0. 

It is easy to check that V .  G also vanishes inside the flux tubes; that is why the two last 

terms in ( 1 ) are needed. According to the Poincar6 lemma there exists a vector potential 
F such that G = V x F. The invariant under consideration, which may be interpreted 

as a self-linking number of  the vector field G, can now be defined as follows: 

W ( i , j )  / ( G .  F - Bi - • d3x. (2) = qS~Ai, d?~ Aj B j) 

The integral is taken over all space while the last two terms are non-zero only inside 

the flux tubes. 

The quantity W(i , j )  is gauge-invariant. In fact, let Ai --~ Ai + • f ,  where f is an 
arbitrary single-valued function. Then G --~ G + V f × Aj + fB j .  The corresponding 

change in the vector-potential F is fA j .  By use of  these expressions and the Gauss 
theorem one can directly check that the integral (2) does not change under this gauge 

transformation: 

W---~W+ ( G f .  A j + F . V x  ( f A j ) + f 2 A j . B j + d ~ j B j . V f  

- 2 f&iAj .  Bj - f 2 A j .  g j )d3x 

= w + ( 2 G f .  Aj + 4,jBj • V f  - 2f~iAj. Bj)d3x 

; W +  f B i .  V( f4 ,~ )d3x  = W 

Similarly one can check that the integral (2) is invariant under the change Aj --~ 

Aj q- Vg. 
Let us prove now that this integral representation is equivalent to the Sato-Levine 

geometrical construction. 

5. Proof of equivalence 

From a simple geometrical point of  view the equivalence between the integral (2) and 

the Sato-Levine invariant can be explained as follows. Outside the flux tubes only the 
first term in (1)  can be non-zero. This means that the vector G there is perpendicular 
to both vector-potentials A i and A j, i.e. it defines a closed curve of  intersection between 

two Seifert surfaces having as their normals Ai and Aj. The frame along this curve of 
intersection is determined by the normal to one of  these surfaces, i.e. by Ai o r  Aj. Hence 
the helicity of  the vector G is the self-linking number of  the curve of  intersection, i.e. 

the Sato-Levine invariant. 
The topological proof  is more sophisticated. Below we sketch it. Let us assume that 

the potentials Ai and Aj vanish at infinity. Then we can work in the compactification of  
the three-dimensional space S 3 obtained by joining the infinite point to R 3. Let K 3 be 
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the complement space to the two-link. It is obtained from S 3 by subtracting the volume 

occupied by the two flux tubes. The idea of the proof is to show that a mapping of K03 
(modified by a surgery) into a two-dimensional torus T 2 = T/x  Tj, where T/and Tj are 

the toroidal surfaces of the flux tubes, has a Hopf invariant (2) equal to the self-linking 

number of the curve of intersection. 
The boundary of K03 consists of the two toroidal surfaces of the flux tubes. Fix on 

each surface a coordinate system, the meridian/z and the preferred longitude A, i.e. the 
longitude which has zero self-linking number. Let us make for each torus the following 

reconstruction (the so called Dehn surgery, see for example [Browder 1972] ). Cut the 
torus along a longitude and a meridian, then paste one of the A curves into one of the/x 

curves, and the other /z  curve into the remaining ~ curve but in the opposite direction. 

(One may treat this construction as an abstract transformation, or visualize it by looking 

from four-dimensional space. Formally, this is Dehn's surgery with a 2-d matrix having 
zeros on the diagonal and 1 and - 1  for off-diagonal terms.) The modified complement 

space with the repasted boundary is called K 3. 
Consider now a mapping of K 3 into T 2 in the form F = ~bi x ~bj outside the flux tubes 

and F is arbitrary inside the flux tubes. Let L be a curve formed by the inverse image 
of a point on T 2. This curve is framed by the inverse image of a vector on T 2. We can 

consider L as the intersection of the Seifert surfaces with the frame along L being a 

tangent frame along one of the surfaces. 

The Hopf invariant of the mapping f is determined by the formula fK3 s A* w 

[Dubrovin et al. 1979], where s is the 1-form defined by ds = *w, and w is a 2- 
form on T 2 defined in such away that its inverse image is *w = d~i  A d~bj = Ai A A j .  It 

is noted in the textbook by Dubrovin et al. that the invariant is independent of the choice 

of s, and gauge invariant, i.e. invariant under the transformation ~o to w + d X where X 
is an arbitrary l-form. Formula (2) for W is a direct extension of the Hopf invariant. 

The extra terms in (2),  compared to the usual helicity, appear because in our case the 
mapping includes a non-compact manifold (the external domain of the flux tubes). 

6. Discussion 

The representation (2) of the two-link topological invariant in terms of quantities 

familiar to physicists is a step towards making the high-order topological invariants 
more useful in applications. However some important questions have to be answered 
before we can try to use this invariant. One of them is: "Is this topological invariant 
a Hopf invariant, i.e. a conservation law, of ideal MHD?" The answer to this question 
is apparently "yes" because the Sato-Levine invariant, and consequently W, is invariant 
under deformations of space. 

Another question concerns the role of diffusivity. In real hydrodynamics and magne- 
tohydrodynamics with viscosity or diffusion there is, in general, no concept of vortex 
or magnetic lines. However, when the diffusivities are small, or more correctly, the 
dimensionless Reynolds numbers are large, it is still reasonable to consider the field 
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lines, taking into account diffusion effects only in regions of strong field gradients. In 
these regions magnetic or vortex lines can reconnect. It is known that reconnections 
almost conserve the helicity integral in the limit of small diffusivity ]Taylor 1974]. 
Transformations of high-order topological invariants under reconnections are discussed 
in [ Akhmetiev and Ruzmaikin 1992, Ruzmaikin and Akhmetiev 1994]. 
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